


## European Technical Assessment



English translation prepared by IETcc. Original version in Spanish language

#### **General Part**

| Technical Assessment Body issuing<br>the ETA designated according to<br>Art. 29 of Regulation (EU) 305/2011:           | Instituto de Ciencias de la Construcción Eduardo<br>Torroja (IETcc)                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Trade name of the construction product:                                                                                | HEHO, HECLO, HEHC, HEA4, HEC4 drop in anchor                                                                                                                                                          |
| Product family to which the construction product belongs:                                                              | Deformation controlled anchor made of galvanized<br>steel or stainless steel or stainless steel of sizes<br>M6, M8, M10, M12, M16 and M20 for use in<br>concrete for redundant non-structural systems |
| Manufacturer:                                                                                                          | Index - Técnicas Expansivas S.L.<br>Segador 13.<br>26006 Logroño (La Rioja) Spain.<br>website: <u>www.indexfix.com</u>                                                                                |
| Manufacturing plant:                                                                                                   | Index plant 2                                                                                                                                                                                         |
| This European Technical<br>Assessment contains:                                                                        | 12 pages including 3 annexes which form an integral part of this assessment.                                                                                                                          |
| This European Technical<br>Assessment is issued in accordance<br>with regulation (EU) No 305/2011, on<br>the basis of: | European Assessment Document EAD 330747-<br>00-0601, "Fasteners for use in concrete for<br>redundant non-structural systems", ed. May 2018.                                                           |
| This version replaces:                                                                                                 | ETA 14/0068 issued on 31/07/2020                                                                                                                                                                      |

This European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to article 25 (3) of Regulation (EU) No 305/2011.

## SPECIFIC PART

#### 1. Technical description of the product

The Index HEHO, HECLO, HEHC, in the range of M6 to M20, is an anchor made of galvanised steel. The Index HEA4, HEC4, in the range of M6 to M20, is an anchor made of stainless steel. They are placed into a drilled hole and anchored by deformation-controlled expansion. The anchorage is characterised by friction between the sleeve and concrete.

Product and installation descriptions are given in annexes A1 and A2.

# 2. Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a mean to choosing the right products in relation to the expected economically reasonable working life of the works.

#### 3. Performance of the product and references to the methods used for its assessment

#### 3.1 Safety in case of fire (BWR 2)

| Essential characteristic | Performance                                                            |  |  |  |  |
|--------------------------|------------------------------------------------------------------------|--|--|--|--|
| Reaction to fire         | Anchorages satisfy requirements for<br>class A1 according to EN13501-1 |  |  |  |  |
| Resistance to fire       | See annex C5                                                           |  |  |  |  |

#### 3.2 Safety in use (BWR 4)

| <b>Essential cha</b> | racteristic |       |        |    |       |        | Performance           |
|----------------------|-------------|-------|--------|----|-------|--------|-----------------------|
| Characteristic       | resistance  | under | static | or | quasi | static | See annexes C3 and C4 |
| loading              |             |       |        |    |       |        |                       |

# 4. Assessment and Verification of Constancy of Performances (hereinafter AVCP) system applied, with reference to its legal base

The applicable European legal act for the system of Assessment and Verification of Constancy of Performances (see annex V to Regulation (EU) No 305/2011) is 97/161/EC.

The system to be applied is 2+.

# 5. Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

The technical details necessary for the implementation of the AVCP system are laid down in the quality plan deposited at Instituto de Ciencias de la Construcción Eduardo Torroja.



Instituto de Ciencias de la Construcción Eduardo Torroja CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS

C/ Serrano Galvache n.º 4. 28033 Madrid. Tel: (+34) 91 302 04 40 Fax. (+34) 91 302 07 00 <u>https://dit.ietcc.csic.es</u>



On behalf of the Instituto de Ciencias de la Construcción Eduardo Torroja Madrid, 4<sup>th</sup> of March 2021



**Director IETcc - CSIC** 

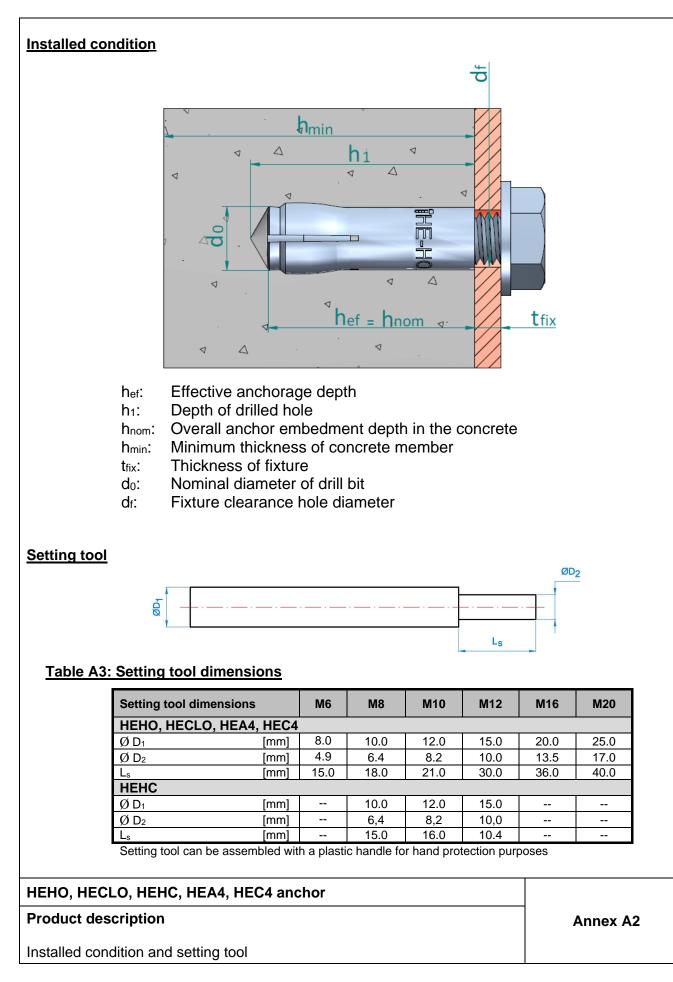
| Product     |              |             |
|-------------|--------------|-------------|
|             |              |             |
| HEHO anchor | HECLO anchor | HEHC anchor |
| HEH4 anchor |              | HEC4 anchor |

Identification on sleeve: Index logo + "HEHO (HECLO, HEHC, HEA4, HEC4)" + Metric; e.g: ■HEHO M6

## Table A1: Dimensions

| Anchor dimensions     |      | M6 | M8 | M10 | M12 | M12D | M16 | M20 |
|-----------------------|------|----|----|-----|-----|------|-----|-----|
| HEHO, HECLO           |      |    |    |     |     |      |     |     |
| ØD: External diameter | [mm] | 8  | 10 | 12  | 15  | 16   | 20  | 25  |
| Ød: internal diameter | [mm] | M6 | M8 | M10 | M12 | M12  | M16 | M20 |
| L: total length       | [mm] | 25 | 30 | 40  | 50  | 50   | 65  | 80  |
| HEHC                  | HEHC |    |    |     |     |      |     |     |
| ØD: External diameter | [mm] | -  | 10 | 12  | 15  |      |     |     |
| Ød: internal diameter | [mm] |    | M8 | M10 | M12 |      |     |     |
| L: total length       | [mm] |    | 25 | 25  | 25  |      |     |     |
| HEA4, HEC4            |      |    |    |     |     |      |     |     |
| ØD: External diameter | [mm] | 8  | 10 | 12  | 15  |      | 20  | 25  |
| Ød: internal diameter | [mm] | M6 | M8 | M10 | M12 |      | M16 | M20 |
| L: total length       | [mm] | 25 | 30 | 40  | 50  |      | 65  | 80  |

## Table A2: Materials


| Item | Designation    | Material for HEHO, HECLO, HEHC                         | Material for HEA4, HEC4   |
|------|----------------|--------------------------------------------------------|---------------------------|
| 1    | Sleeve         | Carbon steel, zinc plated ≥ 5 µm ISO 4042<br>Zn5/An/T0 | Stainless steel, grade A4 |
| 2    | Cone           | Carbon steel, zinc plated ≥ 5 µm ISO 4042<br>Zn5/An/T0 | Stainless steel, grade A4 |
| 3    | Retention disc | Plastic                                                | Plastic                   |

## HEHO, HECLO, HEHC, HEA4, HEC4 anchor

#### Product description

Product and materials

Annex A1



#### Specifications of intended use

#### Anchorages subjected to:

- Static or quasi static loads for redundant non-structural systems
- Fire exposure
- The anchor may only be used if in the design and installation specifications for the fixture the excessive slip or failure of one anchor will not result in a significant violation of the requirements on the fixture in the serviceability and ultimate state.

#### Base materials:

- Reinforced or unreinforced normal weight concrete without fibres according to EN 206-1:2013+A1:2016
- Strength classes C12/15 to C50/60 according to EN 206-1:2013+A1:2016: HEHO / HECLO anchors
- Strength classes C20/25 to C50/60 according to EN 206-1:2013+A1:2016: HEHC / HEA4 / HEC4 anchors
- Cracked or uncracked concrete

#### Use conditions (environmental conditions):

- HEHO, HECLO, HEHC: anchorages subjected to dry internal conditions.
- HEA4, HEC4: anchorages subjected to dry internal conditions, to external atmospheric exposure (including industrial and marine environment) or to permanent internal damp conditions if no particular aggressive conditions exist. Such particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used). Atmospheres under Corrosion Resistance Class CRC III according to EN 1993-1-4:2006+A1:2015 annex A.

#### Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete.
- Verifiable calculation rules and drawings are prepared taking into account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages under static or quasi-static actions are designed for design method B in accordance with EN 1992-4:2018
- Anchorages under fire exposure are designed in accordance to EN 1992-4:2018. It must be ensured that local spalling of the concrete cover does not occur.

#### Installation:

- Hole drilling by rotary plus hammer mode.
- Anchor installation carried out by appropriately qualified personal and under the supervision of the person responsible for technical matters of the site.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of aborted hole or smaller distance if the aborted hole is filled with high strength mortar and if under shear or oblique tension load it is not the direction of the load application.
- HEHO, HECLO, HEHC: the bolt or threaded rod to be used shall be property class 4.6, 5.6, 5.8, 6.8 or 8.8 according to ISO 898-1.
- HEA4, HEC4: the bolt or threaded rod to be used shall be property class A4-50, A4-70 or A4-80 according to EN 3506-1:2009
- The length of the bolt shall be determined as: -Minimum bolt length =  $t_{fix} + l_{s,min}$

-Maximum bolt length =  $t_{fix} + l_{s,max}$ 

# HEHO, HECLO, HEHC, HEA4, HEC4 anchor Intended use Annex B1

Specifications

## Table C1: Installation parameters for HEHO, HECLO, HEHC, HEA4, HEC4 anchor

|                  |                                       |      |         |         | Pe       | rformar  | nces     |          |          |
|------------------|---------------------------------------|------|---------|---------|----------|----------|----------|----------|----------|
| Install          | ation parameters                      |      | M6      | M8      | M10      | M12      | M12D     | M16      | M20      |
| do               | Nominal diameter of drill bit:        | [mm] | 8       | 10      | 12       | 15       | 16       | 20       | 25       |
| D                | Thread diameter:                      | [mm] | M6      | M8      | M10      | M12      | M12      | M16      | M20      |
| df               | Fixture clearance hole diameter ≤     | [mm] | 7       | 9       | 12       | 14       | 14       | 18       | 22       |
| Tinst            | Maximum installation torque:          | [Nm] | 4       | 11      | 17       | 38       | 38       | 60       | 100      |
| HEHO             | , HECLO                               |      | M6 x 25 | M8 × 30 | M10 x 40 | M12 x 50 | M12 x 50 | M16 x 65 | M20 x 80 |
| ls,min           | Minimum screwing depth:               | [mm] | 6       | 8       | 10       | 12       | 12       | 16       | 20       |
| ls,max           | Maximum screwing depth:               | [mm] | 10      | 13      | 17       | 21       | 21       | 27       | 34       |
| h₁               | Depth of drilled hole:                | [mm] | 27      | 33      | 43       | 54       | 54       | 70       | 86       |
| h <sub>nom</sub> | Overall anchor embedment depth:       | [mm] | 25      | 30      | 40       | 50       | 50       | 65       | 80       |
| h <sub>ef</sub>  | Effective anchorage depth:            | [mm] | 25      | 30      | 40       | 50       | 50       | 65       | 80       |
| h <sub>min</sub> | Minimum thickness of concrete member: | [mm] | 100     | 100     | 100      | 100      | 100      | 130      | 160      |
| Smin             | Minimum allowable spacing:            | [mm] | 60      | 60      | 80       | 100      | 100      | 130      | 160      |
| Cmin             | Minimum allowable distance:           | [mm] | 105     | 105     | 140      | 175      | 130      | 230      | 280      |
| HEHC             |                                       |      | I       | M8 x 25 | M10 x 25 | M12 x 25 | I        | I        | ł        |
| ls,min           | Minimum screwing depth:               | [mm] |         | 7       | 8        | 10       |          |          |          |
| ls,max           | Maximum screwing depth:               | [mm] |         | 12      | 13       | 13       |          |          |          |
| h1               | Depth of drilled hole:                | [mm] |         | 28      | 28       | 29       |          |          |          |
| h <sub>nom</sub> | Overall anchor embedment depth:       | [mm] |         | 25      | 25       | 25       |          |          |          |
| h <sub>ef</sub>  | Effective anchorage depth:            | [mm] |         | 25      | 25       | 25       |          |          |          |
| h <sub>min</sub> | Minimum thickness of concrete member: | [mm] |         | 80      | 80       | 80       |          |          |          |
| Smin             | Minimum allowable spacing:            | [mm] |         | 75      | 75       | 75       |          |          |          |
| Cmin             | Minimum allowable distance:           | [mm] |         | 60      | 60       | 60       |          |          |          |
| HEA4,            | HEC4                                  |      | M6 x 25 | M8 x 30 | M10 x 40 | M12 x 50 | :        | M16 x 65 | M20 × 80 |
| ls,min           | Minimum screwing depth:               | [mm] | 6       | 8       | 10       | 12       |          | 16       | 20       |
| ls,max           | Maximum screwing depth:               | [mm] | 10      | 13      | 17       | 21       |          | 27       | 34       |
| h1               | Depth of drilled hole:                | [mm] | 27      | 33      | 43       | 54       |          | 70       | 86       |
| h <sub>nom</sub> | Overall anchor embedment depth:       | [mm] | 25      | 30      | 40       | 50       |          | 65       | 80       |
| h <sub>ef</sub>  | Effective anchorage depth:            | [mm] | 25      | 30      | 40       | 50       |          | 65       | 80       |
| h <sub>min</sub> | Minimum thickness of concrete member: | [mm] | 80      | 80      | 80       | 100      |          | 130      | 160      |
| Smin             | Minimum allowable spacing:            | [mm] | 60      | 60      | 100      | 100      |          | 130      | 160      |
|                  |                                       |      |         |         |          |          |          |          |          |

#### Performances

Installation parameters



# Table C2: Characteristic values to loads of design method B according to EN 1992-4 for HEHO, HECLO, HEHC anchor

| Chara               | cteristic values of resistance to loa                   | ds of |      |      | P    | erforma | nces  |       |       |
|---------------------|---------------------------------------------------------|-------|------|------|------|---------|-------|-------|-------|
| desigr              | n method B                                              |       | M6   | M8   | M10  | M12     | M12D  | M16   | M20   |
| Any lo              | bad direction                                           |       |      |      | •    |         |       |       | •     |
| HEHO,               | HECLO                                                   |       |      |      |      |         |       |       |       |
| F <sup>0</sup> Rk   | Characteristic resistance in C12/15 concrete:           | [kN]  | 1.5  | 3.0  | 4.0  | 6.0     |       | 9.0   | 16.0  |
| F <sup>0</sup> Rk   | Characteristic resistance in C20/25 to C50/60 concrete: | [kN]  | 2.0  | 3.0  | 5.0  | 7.5     | 6.0   | 12.0  | 20.0  |
| γins                | Installation safety factor:                             | [-]   | 1.2  | 1.2  | 1.4  | 1.4     | 1.4   | 1.4   | 1.4   |
| Scr                 | Critical spacing:                                       | [mm]  | 75   | 90   | 120  | 150     | 200   | 195   | 240   |
| Ccr                 | Critical edge distance:                                 | [mm]  | 40   | 45   | 60   | 75      | 150   | 100   | 120   |
| HEHC                | -                                                       |       |      |      |      |         |       |       |       |
| F <sup>0</sup> Rk   | Characteristic resistance in C20/25 to C50/60 concrete: | [kN]  |      | 2.5  | 4.0  | 4.0     |       |       |       |
| γins                | Installation safety factor:                             | [-]   |      | 1.2  | 1.2  | 1.2     |       |       |       |
| Scr                 | Critical spacing:                                       | [mm]  |      | 120  | 120  | 120     |       |       |       |
| Ccr                 | Critical edge distance:                                 | [mm]  |      | 60   | 60   | 60      |       |       |       |
| Shear               | loads: steel failure with lever arm                     |       |      |      |      |         |       |       |       |
| M <sup>0</sup> Rk,s | Characteristic bending moment, steel class 4.6          | [Nm]  | 6.1  | 15.0 | 29.9 | 52.4    | 52.4  | 133.3 | 259.8 |
| γMs <sup>1)</sup>   | Partial safety factor:                                  | [-]   |      |      |      | 1.67    |       |       |       |
| $M^0_{Rk,s}$        | Characteristic bending moment, steel<br>class 4.8       | [Nm]  | 6.1  | 15.0 | 29.9 | 52.4    | 52.4  | 133.3 | 259.8 |
| γ <sub>Ms</sub> 1)  | Partial safety factor:                                  | [-]   |      |      |      | 1.25    |       |       |       |
| M <sup>0</sup> Rk,s | Characteristic bending moment, steel<br>class 5.6       | [Nm]  | 7.6  | 18.8 | 37.4 | 65.5    | 65.5  | 166.6 | 324.8 |
| γMs <sup>1)</sup>   | Partial safety factor:                                  | [-]   |      |      |      | 1.67    |       |       |       |
| $M^0$ Rk,s          | Characteristic bending moment, steel<br>class 5.8       | [Nm]  | 7.6  | 18.8 | 37.4 | 65.5    | 65.5  | 166.6 | 324.8 |
| γMs <sup>1)</sup>   | Partial safety factor:                                  | [-]   |      |      |      | 1.25    |       |       |       |
| $M^0_{Rk,s}$        | Characteristic bending moment, steel<br>class 6.8       | [Nm]  | 9.2  | 22.5 | 44.9 | 78.7    | 78.7  | 199.9 | 389.7 |
| γ <sub>Ms</sub> 1)  | Partial safety factor:                                  | [-]   |      |      |      | 1.25    |       |       | _     |
| M <sup>0</sup> Rk,s | Characteristic bending moment, steel<br>class 8.8       | [Nm]  | 12.2 | 30.0 | 59.9 | 104.9   | 104.9 | 266.6 | 519.7 |
| γMs <sup>1)</sup>   | Partial safety factor:                                  | [-]   |      |      |      | 1.25    |       | •     | •     |

1) In absence of other national regulations

## HEHO, HECLO, HEHC anchor

#### Performances

Characteristic resistances

#### Table C3: Characteristic values to loads of design method B according to EN 1992-4 for HEA4, HEC4 anchor

| Chara               | acteristic values of resistance to loads of o           | design |      |      | Perform | nances |       |       |
|---------------------|---------------------------------------------------------|--------|------|------|---------|--------|-------|-------|
| metho               | od B                                                    |        | M6   | M8   | M10     | M12    | M16   | M20   |
| All loa             | ad direction                                            |        |      |      |         |        |       |       |
| $F^0_{Rk}$          | Characteristic resistance in C20/25 to C50/60 concrete: | [kN]   | 2.5  | 3.5  | 3.5     | 6.5    | 12.5  | 16.5  |
| γins                | Installation safety factor:                             | [-]    |      |      | 1.      | .4     |       |       |
| Scr                 | Critical spacing:                                       | [mm]   | 200  | 200  | 200     | 200    | 260   | 320   |
| Ccr                 | Critical edge distance:                                 | [mm]   | 150  | 150  | 150     | 150    | 195   | 240   |
| Shear               | r loads: steel failure with lever arm                   |        |      |      |         |        |       |       |
| M <sup>0</sup> Rk,s | Characteristic bending moment, steel class<br>A4-50     | [Nm]   | 7.6  | 18.8 | 37.4    | 65.6   | 166.6 | 324.8 |
| γMs <sup>1)</sup>   | Partial safety factor:                                  | [-]    |      |      | 2.3     | 38     | •     |       |
| $M^0$ Rk,s          | Characteristic bending moment, steel class<br>A4-70     | [Nm]   | 10.6 | 6.3  | 52.4    | 91.8   | 233.1 | 454.7 |
| γMs <sup>1)</sup>   | Partial safety factor:                                  | [-]    |      |      | 1.      | 56     |       |       |
| M <sup>0</sup> Rk,s | Characteristic bending moment, steel class<br>A4-80     | [Nm]   | 12.2 | 30.0 | 59.9    | 104.9  | 266.6 | 519.7 |
| γMs <sup>1)</sup>   | Partial safety factor:                                  | [-]    |      |      | 1.:     | 34     |       |       |

1) In absence of other national regulations

#### HEA4, HEC4 anchor

#### Performances

Characteristic resistances

# Table C4: Characteristic resistance under fire exposure in concrete C20/25 to C50/50 in any load direction according to EN 1992-4 for HEHO, HECLO anchor

|        | teristic resistance under<br>e C20/25 to C50/60 in an |                                       |      |     |     | Р   | erforma             | ices |     |     |
|--------|-------------------------------------------------------|---------------------------------------|------|-----|-----|-----|---------------------|------|-----|-----|
|        | in concrete                                           |                                       |      | M6  | M8  | M10 | M12                 | M12D | M16 | M20 |
| R30    | Characteristic resistance:                            | F <sup>0</sup> Rk,fi30 <sup>1)</sup>  | [kN] | 0.2 | 0.4 | 0.9 | 1.7                 | 1,7  | 3.1 | 4.9 |
| R60    | Characteristic resistance: I                          | F <sup>0</sup> Rk,fi60 <sup>1)</sup>  | [kN] | 0.2 | 0.3 | 0.8 | 1.3                 | 1,3  | 2.4 | 3.7 |
| R90    | Characteristic resistance: I                          | F <sup>0</sup> Rk,fi90 <sup>1)</sup>  | [kN] | 0.1 | 0.3 | 0.6 | 1.1                 | 1,1  | 2.0 | 3.2 |
| R120   | Characteristic resistance: I                          | F <sup>0</sup> Rk,fi120 <sup>1)</sup> | [kN] | 0.1 | 0.2 | 0.5 | 0.8                 | 0,8  | 1.6 | 2.5 |
| R30 to | Spacing s                                             | Scr,fi                                | [mm] |     |     |     | 4 x h <sub>et</sub> |      |     |     |
| R120   | Edge distance c                                       | Ccr,fi                                | [mm] |     |     |     | 2 x he              | f    |     |     |

<sup>1)</sup> in absence of other national regulations the partial safety factor for resistance under fire exposure  $\gamma_{M,fi}$  =1.0 is is recommended If fire attack is from more than one side, the design method may be taken if edge distance of the anchor is c ≥ 300 mm

Table C5: Characteristic resistance under fire exposure in concrete C20/25 to C50/50 in any load direction according to EN 1992-4 for HEHC anchor

|        | eristic resistance under fire expo<br>e C20/25 to C50/60 in any load di     |         |    |      | Perform              | nances | -   | -   |
|--------|-----------------------------------------------------------------------------|---------|----|------|----------------------|--------|-----|-----|
|        | in concrete                                                                 | rection | M6 | M8   | M10                  | M12    | M16 | M20 |
| R30    | Characteristic resistance: F <sup>0</sup> <sub>Rk,fi30</sub> <sup>1)</sup>  | [kN]    |    | 0.54 | 0.54                 | 0.54   |     |     |
| R60    | Characteristic resistance: F <sup>0</sup> <sub>Rk,fi60</sub> <sup>1)</sup>  | [kN]    |    | 0.54 | 0.54                 | 0.54   |     |     |
| R90    | Characteristic resistance: F <sup>0</sup> <sub>Rk,fi90</sub> <sup>1)</sup>  | [kN]    |    | 0.44 | 0.54                 | 0.54   |     |     |
| R120   | Characteristic resistance: F <sup>0</sup> <sub>Rk,fi120</sub> <sup>1)</sup> | [kN]    |    | 0.37 | 0.43                 | 0.43   |     |     |
| R30 to | Spacing S <sub>cr,fi</sub>                                                  | [mm]    |    |      | 4 x h <sub>ef-</sub> |        |     |     |
| R120   | Edge distance C <sub>cr,fi</sub>                                            | [mm]    |    |      | 2 x hef              |        |     |     |

<sup>1)</sup> in absence of other national regulations the partial safety factor for resistance under fire exposure  $\gamma_{M,fi}$  =1.0 is is recommended If fire attack is from more than one side, the design method may be taken if edge distance of the anchor is c ≥ 300 mm

# Table C6: Characteristic resistance under fire exposure in concrete C20/25 to C50/50 in any load direction according to EN 1992-4 for HEA4, HEC4 anchor

| Characteristic resistance under fire exposure in concrete C20/25 to C50/60 in any load direction for use in concrete |                                              |                            | Performances        |      |      |      |      |      |
|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------|---------------------|------|------|------|------|------|
|                                                                                                                      |                                              |                            | M6                  | M8   | M10  | M12  | M16  | M20  |
| R30                                                                                                                  | Characteristic resistance: F <sup>0</sup> RI | k,fi30 <sup>1)</sup> [kN]  | 0.20                | 0.73 | 0.87 | 1.63 | 3.19 | 4.12 |
| R60                                                                                                                  | Characteristic resistance: F <sup>0</sup> R  | k,fi60 <sup>1)</sup> [kN]  | 0.18                | 0.59 | 0.87 | 1.63 | 3.19 | 4.12 |
| R90                                                                                                                  | Characteristic resistance: F <sup>0</sup> R  | k,fi90 <sup>1)</sup> [kN]  | 0.14                | 0.44 | 0.87 | 1.63 | 3.14 | 4.12 |
| R120                                                                                                                 | Characteristic resistance: F <sup>0</sup> R  | k,fi120 <sup>1)</sup> [kN] | 0.10                | 0.37 | 0.69 | 1.30 | 2.51 | 3.30 |
| R30 to                                                                                                               | Spacing S <sub>cr,fi</sub>                   | [mm]                       | 4 x h <sub>ef</sub> |      |      |      |      |      |
| R120                                                                                                                 | Edge distance C <sub>cr,fi</sub>             | [mm]                       | 2 x hef             |      |      |      |      |      |

<sup>1)</sup> in absence of other national regulations the partial safety factor for resistance under fire exposure  $\gamma_{M,fi}$  =1.0 is is recommended If fire attack is from more than one side, the design method may be taken if edge distance of the anchor is c ≥ 300 mm

## HEHO, HECLO, HEHC, HEA4, HEC4 anchor

#### Performances

Resistances under fire exposure